Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 40(17): 8127-8141, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33783313

RESUMO

The rise of normal body temperature of 98.6 °F beyond 100.4 °F in humans indicates fever due to some illness or infection. Viral infections caused by different viruses are one of the major causes of fever. One of such viruses is, Chikungunya virus (CHIKV) is known to cause Chikungunya fever (CHIKF) which is transmitted to humans through the mosquitoes, which actually become the primary source of transmission of the virus. The genomic structure of the CHIKV consists of the two open reading frames (ORFs). The first one is a 5' end ORF and it encodes the nonstructural protein (nsP1-nsP4). The second is a 3' end ORF and it encodes the structural proteins, which is consisted of capsid, envelope (E), accessory peptides, E3 and 6 K. Till date, there is no effective vaccine or medicine available for early detection of the CHIKV infection and appropriate diagnosis to cure the patients from the infection. NSP3 of CHIKV is the prime target of the researchers as it is responsible for the catalytic activity. This review has updates of literature on CHIKV; pathogenesis of CHIKV; inhibition of CHIKV using theoretical and experimental approaches.Communicated by Ramaswamy H. Sarma.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Vacinas , Animais , Humanos , Vacinas/metabolismo , Vacinas/farmacologia , Proteínas não Estruturais Virais/química , Replicação Viral
2.
J Biomol Struct Dyn ; 40(13): 5827-5835, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33472563

RESUMO

Infection due to the Chikungunya virus (CHIKV) has taken the life of lots of people; and researchers are working to find the vaccine or promisng drug candidates against this viral infection. In this work, the authors have designed one component reaction based on the thia-/oxa-azolidineone and created a library of 2000 molecules based on the product obtained. Further, the compounds were screened through the docking using iGemdock against the non-structural protein 2 (nsp2) of CHIKV. Molecular docking gives the binding energy (BE) or energy for the formation of the complex between the designed compound and nsp2 of CHIKV; and CMPD222 gave the lowest energy. This is based on the energy obtained from van der Waal's interaction, hydrogen bonding and electrostatic instructions. Further, molecular dynamics simulations (MDS) of nsp2 of CHIKV with and without screened compound (222) were performed to validate the docking results and the change in free energy for the formation of the complex is -10.8327 kcal/mol. To explore the potential of CMPD222, the MDS of the CMPD222-nsp2 of CHIKV were performed at different temperatures (325, 350, 375 and 400 K) to understand the inhibition of the protease. MM-GBSA calculations were performed to determined change in entropy, change in enthalpy and change in free energy to understand the inhibition. Maximum inhibition of nsp2 of CHIKV with CMPD222 is observed at 375 K with a change in free energy of -19.3754 kcal/mol.Communicated by Ramaswamy H. Sarma.


Assuntos
Vírus Chikungunya , Vírus Chikungunya/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...